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In these notes we will discuss the cavity method, and how it can be used to find the spectral density of a
random matrix. We will use it to work out two examples: the semicircle law and the Marchenko-Pastur distribution
for the Gaussian orthogonal and Wishart ensembles respectively. Understanding these concepts will need several
ingredients. First we introduce the notion of a resolvent which is like a generating function for our random matrix,
and contains the information necessary to calculate the spectral density. Then we employ the cavity method to
derive a self-consistent equation for the resolvent of an N ×N matrix as N →∞. By solving this equation we can
obtain the information we want about the probability density of eigenvalues of various random matrix ensembles.

The discussion here is similar to that from A First Course in Random Matrix Theory by Potters and Bouchaud,
which I highly recommend as a resource for those curious about the subject.

1 The Resolvent

Here we introduce a very useful function, known as the resolvent (or Greens function) of an N ×N matrix H. The
function is defined as

g(z) =

〈
1

N
Tr

1

z −H

〉
. (1)

Here 1/M is shorthand for M−1, and z −H is short for zI−H where I is the identity matrix. The angle brackets
denote an average, in the case that H is a random matrix, as we will consider shortly. An alternative representation
of the resolvent can be found by expanding it in an infinite series in H. Then one obtains

g(z) =
1

N

∞∑
k=0

1

zk+1

〈
Tr(Hk)

〉
, (2)

and so we see that g(z) encodes information about all the moments of H. One can see that g(z) is also the Laplace
transform of the response function of any of the variables xi in the linear dynamical system ẋi =

∑
j Hijxj — and

is sometimes called a Greens function for this reason. The way to see this correspondence is to Laplace transform
this dynamical equation — in which case the time derivative becomes a factor of the time-conjugate variable z, and
we have zx̃i =

∑
j Hij x̃j + h̃i for transformed functions x̃i with a source term h̃i, and so x̃i =

∑
j(z −H)−1ij hj .

In the limit that the matrix H becomes very large, the resolvent becomes equal to

g(z) =

∫
ρ(z′)

z − z′
dz′ (3)

where ρ(z) is the density of eigenvalues of the matrix H. This kind of transform is known as a Stieltjes transform
of the function ρ(z). What’s the intuition for this? Note that zI − H obtains a 0 eigenvalue whenever z is an
eigenvalue of H, so Tr 1

zI−H has a pole whenever z is an eigenvalue of H. Similarly g(z) has a pole whenever z is
an eigenvalue of H, since then ρ(z′) does not vanish though the denominator in the integrand z − z′ vanishes. As
the matrix H becomes large, we have an infinite number of these poles at the values of z that are eigenvalues of H.
The idea is that in the N →∞ limit, this is equivalent to weighing the function 1

z−z′ by the spectral density ρ(z′)
and integrating over z′.

If you are not convinced, we can show that our definition of the resolvent is equivalent to the Stieltjes transform
of the spectral density as follows:

Tr
1

z −H
=
∑
i

xi =

∫ ∑
i

δ(x− xi)xdx where xi are eigenvalues of
1

z −H
. (4)

These eigenvalues are given by

xi =
1

z − zi
where zi are eigenvalues of H. (5)

Now we can also define our spectral density as

ρ(z) =
∑
i

δ(z − zi) =⇒
∫

ρ(z′)

z − z′
dz′ =

∫ ∑
i δ(z

′ − zi)
z − z′

dz′. (6)
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So it remains to be shown that Equation 4 reproduces the definition of spectral density, or in other words∫ ∑
i

δ

(
x− 1

z − zi

)
xdx =

∫ ∑
i δ(x− zi)
z − x

dx. (7)

However this equality is satisfied by the definition of the δ function: both sides evaluate to
∑
i

1
z−zi . Therefore we

should be convinced of the equivalence between g(z) and the Stieltjes transform of ρ(z).
The next thing to show is that if we can calculate the resolvent, we can calculate the spectral density of the

eigenvalues of H. This spectral density ρ(z) can be viewed as the marginal distribution of a single eigenvalue of H,
over all possible realizations of H drawn from some underlying ensemble. ρ(z) is a quantity of great interest in the
theory of random matrices. How can we calculate it from its Hilbert transform g(z)? Note that if we take g(z− iε)
then this expands to

g(z − iε) =

∫
ρ(z′)

z − z′ − iε
dz′ =

∫
ρ(z′)(z − z′)
(z − z′)2 + ε2

dz′ + iε

∫
ρ(z′)

(z − z′)2 + ε2
dz′. (8)

Using the fact that

δ(z) =
1

π
lim
ε→0+

ε

ε2 + x2
, (9)

we have that

ρ(z) =
1

π
lim
ε→0+

Im g(z − iε). (10)

Therefore if we can calculate g(z), we can get ρ(z).

2 Calculating the Spectral Density

We will first derive a useful formula that relates the inverse of a matrix to the inverse of its blocks. Take a matrix

M =

(
M11 M12

M21 M22

)
(11)

where M11 is the upper left entry, and we have written it in this form to emphasize that M can be decomposed into
blocks. What is the relationship between M−1 and M−122 ? To figure this out, we can write M−1 in block diagonal
form as well.

M−1 =

(
Q11 Q12

Q21 Q22

)
(12)

Then the fact that MM−1 = I allows us to deduce that

Q−111 = M11 −M12(M22)−1M21. (13)

This is the central formula, also known as the Schur complement formula, that will allow us to construct a self-
consistent equation for the resolvent.

2.1 The Gaussian Orthogonal Ensemble

As a warm up problem we can use this equation to calculate the resolvent and therefore the spectral density of the
Gaussian orthogonal ensemble, which is a rotationally invariant gaussian ensemble composed of symmetric matrices
(which admit diagonalization by an orthogonal matrix). In particular the joint probability density function of the
entries Hij of a Gaussian orthogonal matrix is

p(H) =
1

Z
e−

N
4 Tr(H2). (14)

Recalling that Tr(H2) =
∑
jkH

2
jk for a symmetric matrix H, this distribution means that each element of H is

gaussian distributed with variance 1/N , except for the diagonal entries which have variance 2/N .
Now let’s define the matrix M = z−H, and G(z) = M−1 and G2(z) = (M22)−1. The cavity method leverages

the fact that as N gets large, 〈TrG2(z)〉 should approach g(z). Now we can use the Schur formula, which tells us
that

G(z)−111 = M11 −H12G2(z)H21. (15)
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Taking the expectation of this expression gives

1

g(z)
= z −

〈∑
j

H2
1j(M22)−1jj

〉
= z − g2(z) = z − g(z). (16)

Note that we have used the fact that
〈
G(z)−111

〉
= 1

g(z) which comes from the self-averaging property of the resolvent,

such that each of the diagonal elements of M−1 will be the same with O(N−1/2) fluctuations. Then we can solve
this algebraic equation for g(z) to obtain

g(z) =
1

2

(
z ± i

√
4− z2

)
. (17)

Using Equation 10, one can find that ρ(x) = 1
2π

√
4− x2. This is the celebrated semicircle law, and is the spectral

distribution for many random matrix ensembles, including all the gaussian ensembles.

2.2 The Wishart Ensemble

Consider a Wishart matrix W = 1
THHᵀ, where H has dimensions N × T , so that W is an N × N matrix. The

entries of H are each i.i.d. gaussian random variables, with no symmetry conditions. Defining M = z −W, our
goal is to calculate g(z) =

〈
TrM−1

〉
. We will define the matrix G(z) = M−1 and G2(z) = (M22)−1. The Schur

formula tells us that
G(z)−111 = M11 −M12(M22)−1M21. (18)

We see that the resolvent of the submatrix W22 is g2(z) = 1
N

〈
Tr(M22)−1

〉
. In the limit that the size of W gets

very large, the resolvents g(z) and g2(z) should be equal. This equality allows us to enforce an additional constraint
and solve for g(z). Instead of calculating g2(z) directly, we see that it comes out as part of an expression when we
average the Schur formula.

Another way to say this is: our goal is to express g2(z) in terms of g(z) using the Schur formula. Then at the
end we will set g(z) = g2(z) and be able to solve for this resolvent.

In order to take the expectation of Equation 18, we first note that, just as in the case of the Gaussian orthogonal
ensemble, we obtain

〈
G(z)−111

〉
= 1

g(z) . Then we note that 〈M〉11 = 〈z −W11〉 = z − 1.

Now we tackle the trickier term M12(M22)−1M21, whose expectation we wish to calculate. This term can be
written as ∑

j,k

M1j(M22)−1jkMk1. (19)

We now have to do some careful bookkeeping of indices. Noting that the off diagonal components of M are the
same as those of W, and expanding out the components of W in terms of H, we obtain

1

T 2

N∑
j,k=2

T∑
s,t=1

H1sHjs(M22)−1jk HktH1t (20)

Under expectation the factor H1sH1t is equivalent to a factor of δts. Therefore this term becomes

1

T 2

N∑
j,k=2

T∑
t=1

HjtHkt(M22)−1jk =
1

T
TrW22G2(z). (21)

We can then simplify this using the definition of G2(z) in terms of W22, namely G2(z) = (z −W22)−1. Therefore

−W22G2(z) = (z −W22)(z −W22)−1 − z(z −W22)−1 = I− z(z −W22)−1. (22)

Taking the trace of this expression gives N − Nzg2(z). Putting everything together, we finally end up with the
algebraic equation

1

g(z)
= z − 1 + q − qzg(z), (23)

where we have defined q = N/T . Solving this quadratic equation gives

g(z) =
z + q − 1±

√
(z + q − 1)2 − 4qz

2qz
=
z + q − 1±

√
(z − λ+)(z − λ−)

2qz
, (24)
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where we define λ± = (1±√q)2. It turns out that the correct branch to take of g(z) is the one with the negative
radical. Using this in conjunction with Equation 10, one finds that

ρ(x) =

√
(λ+ − x)(x− λ−)

2πqx
for λ− < x < λ+. (25)

There is an additional subtlety for N > T (q > 1). Here our intuition tells us that there should be N − T = q−1
q N

trivial zeros of W, since it will not be full rank. Indeed, one can confirm that in this case there is a δ function in
the spectral density at x = 0. So the full spectral density is

ρ(x) =

√
(λ+ − x)(x− λ−)

2πqx
+
q − 1

q
δ(x)Θ(q − 1). (26)

3 Covariance Matrices

Do any of these ensembles have any practical relevance? In fact the Wishart ensemble is a very useful tool in signal
processing, as it represents a null model for an empirically calculated covariance matrix of a multidimensional time
series which is uncorrelated in each of its dimensions. In fact doing principal component analysis on a data matrix
H is equivalent to finding the eigenvalues of the matrix HHᵀ, and under the null model that each entry of H is
i.i.d and gaussian, the results of this diagonalization will exactly yield the Marchenko-Pastur distribution. One
important question is what happens if the underlying N ×T matrix is no no longer uncorrelated along each of its N
rows. This would occur naturally in a situation where different variables are correlated: for example if one measures
humidity and temperature separately at a number of different points in time. In this case there is some underlying
covariance matrix Σ fore each of the multivariate columns of H. What is the spectral density of HHᵀ? In order to
answer this question it is necessary to develop some tools of free probability, which we will do in subsequent notes.
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