
Kramers Wannier Duality

The Kramers Wannier duality is of central importance in the study of the 2D statmech models. We can use it to
calculate the critical temperature of the 2D Ising and Potts model on some planar lattices, and also to obtain dual
representations of spin-spin correlation functions.

1 Square lattice

First we will discuss the KW duality in the simplest case where it was first understood: the square lattice, where all bonds
have the same strength J . Consider the Ising model with Hamiltonian given by

H({σi}) = −J
∑
⟨ij⟩

σiσj , (1)

with the sum ⟨ij⟩ over nearest neighbors on the square lattice in 2 dimensions. The Ising spins are binary degrees of
freedom, each of which can assume the values σi ∈ {1,−1}. In order to calculate the partition function we wish to
determine

Z =
∑
{σi}

e−βH({σi}) (2)

where β is inverse temperature. It will be convenient to define K = βJ in the following calculations.

1.1 High temperature expansion

The exact expression for the partition function is

Z(K) =
∑
σ

∏
⟨ij⟩

eKσiσj . (3)

We have explicitly written out the dependence on K since it is this functional dependence of Z that is important for
calculating thermodynamic quantities. The important fact here is that for ±1 spins, we have the identity exσiσj =
cosh(x)(1− σiσj tanhx), since

1± tanhx =
coshx± sinhx

coshx
=

e±x

coshx
. (4)

Defining N as the number of spins in the lattice, so that 2N is the number of bonds, we can exactly rewrite the partition
function as

Z(K) = cosh2N K
∑
σ

∏
⟨ij⟩

(1 + tanhKσiσj). (5)

We see that if we expand the product along all of the 2N bonds, we will get 22N terms, each one of which corresponds
to a subset of bonds in the lattice contributing a factor of tanhK, and the rest of the bonds contributing a factor of 1.
The only subsets of bonds which contribute to the partition function have an even number of bonds connected to each
spin and therefore trace out a set of closed polygons, since each of the σ’s must appear either 0, 2 or 4 times so as not to
disappear under averaging. Each term corresponding to a configuration of closed polygons will, under summation over all
spins, be multiplied by a factor of 2N . Therefore our partition function assumes the form

Z(K) = 2N cosh2N K
∑

C∈CP
tanh|C| K (6)

where |C| is the number of bonds in the closed polygon configuration C. Note that this expression for the partition
function is still exact. We can truncate the expression and get a good approximation if tanhK is small (true at high
temperature, since K = J/T ) and realize that terms containing fewer bonds (therefore enclosing less area) contribute
more to the partition function. With J positive (as in a ferromagnet) the loops all have the same sign: otherwise they
have alternating sign depending on their length, but this expression for the partition function is exact in all cases, and is
known as a high temperature expansion for aforementioned reasons.
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Figure 1: On the left: a picture of a diagram which does not contribute to the high temperature expansion of the partition
function, because it averages to zero due to the presence of spins on which only one edge is incident. On the right: a
term in the high temperature expansion corresponding to a configuration of closed polygons. Darkened edges represent
factors of tanhK. Here the spins live on the intersections of the grid lines, however the picture looks the same for the
low temperature expansion, in which case spins live at the centers of plaquettes and the grid lines denote the dual lattice,
with darkened edges contributing a factor of e−2K .

Figure 2: The primal lattice is shown in black (with spins sitting at intersections between black lines. The dual lattice
is shown in dashed red lines, where spins on the dual lattice sit at intersections of red lines, and therefore at the centers
of plaquettes on the primal lattice. Therefore closed polygons on the dual lattice encircle clusters of spins on the primal
lattice and vice versa.

1.2 Low temperature expansion

At low temperature, the partition function is dominated by the spin configurations with all spins aligned or anti-aligned,
since these are the lowest-energy states and contribute the most to the partition function with β → ∞. The leading
order corrections to the partition function then correspond to spin configurations with islands of spins flipped. A spin
configuration with total island perimeter |C| around clusters of overturned spins will contribute to the partition function
a term of form e2K(N−|C|). Each spin configuration is characterized by a set of closed polygons on the dual lattice, since
we can outline the droplets of overturned spins on the original (primal) lattice with closed polygons on the dual lattice.
Therefore, once again, the partition function can be written as a sum over configurations of closed polygons.

Z(K) = 2
∑

C∈CP
e2K(N−|C|) = 2e2KN

∑
C∈CP

e−2K|C| (7)

where |C| is the number of bonds in polygon configuration C and N is the number of bonds in the lattice. Again, this
expression for the partition function is exact if we truly sum over all sets of closed polygons on the dual lattice. At low
temperatures the contribution from polygon configurations with large |C| is small and can be neglected, so this expression
for the partition function is called the low temperature expansion. We now have two exact expressions for the partition
function: one in which we have factored out the infinite temperature partition function and kept a sum over closed polygons
and the other in which we have factored out the zero temperature partition function and kept sum over closed polygons
(but with a different function weighting each polygon configuration according to the number of bonds it contains).

1.3 Duality

We can now state the nontrivial exact equality

Z(K) = 2N cosh2N K
∑

C∈CP
tanh|C| K = 2e2KN

∑
C∈CP

e−2K|C|. (8)

The fact that both expressions for the partition function can be written in terms of sums over closed polygons is highly
suggestive of a relationship between the two. In particular, the sums over the loops become the same if we consider the
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partition function at two different values of the coupling, which we will denote K and K∗ respectively, as long as these
two values satisfy

tanhK∗ = e−2K . (9)

Note that the function relating K to K∗ (i.e. K = arctanh[e−2K ]) is an involution, i.e. it returns the original value when
applied twice. This is a natural requirement for a duality relation. Then we have

Z(K) = 2e2KN
∑

C∈CP
e−2K|C| = 2 tanh−N K∗

∑
C∈CP

tanh|C| K∗ (10)

=
2 tanh−N K∗

2N cosh2N K∗
Z(K∗) (11)

=
2

sinhN (2K∗)
Z(K∗) (12)

We have therefore derived a nontrivial relationship between the partition function of the 2D Ising model at two different
couplings (and therefore two different temperatures) K and K∗. If we know the partition function at some K∗, we can
work out what it must be at some other K which satisfies tanhK∗ = e−2K , i.e. K = − 1

2 log tanhK
∗. This is a map

between partition functions at low temperatures and high temperatures, or vice versa.
We can see that when sinh 2K∗ = 1, we have that Z(K) = 1

2Z(K∗) and so the free energies per spin are identical in
the thermodynamic limit. This indicates that there is a fixed point of our map which is self dual: in fact the condition
sinh 2K∗ = 1 is equivalent to tanhK∗ = e−2K∗

, and so the map K = − 1
2 log tanhK

∗ becomes the identity map K = K∗.

This self dual point is exactly the critical point of the Ising model. We can solve the equation tanhK∗ = e−2K∗
to find

that the solution for the critical coupling is

K∗ =
1

2
log(1 +

√
2), (13)

implying a critical temperature of

Tc =
2J

log(1 +
√
2)

. (14)

To reiterate, the special property of this self-dual point is that the duality map that exchanges high and low temperature
becomes the identity map, implying that this critical point is neither in the high nor the low temperature phase.

1.4 Gauge transformations

The Ising model on the square lattice has crucial symmetry properties that are very useful. In particularly it displays a
gauge symmetry such that the partition function of the model is invariant under flipping the signs of bonds in the shape
of a plus sign, which correspond to flipping the signs of a closed loop of bonds on the dual lattice (since the bonds in the
dual lattice have the values of the bonds they cross in the primal lattice and vice versa).

This gauge symmetry is a local version of the overall symmetry (only on bipartite lattices) in the partition function
when the sign of all the bonds is flipped. This symmetry arises because for each pair of spin configurations related by a
global spin flip, if we flip all the bonds, we have another pair of spin configurations with the same energy: the original
configuration with the two sublattices flipped with respect to one another. Therefore on a square lattice the ferromagnet
and antiferromagnet therefore have the same partition function.

On nonbipartite lattices, which can’t be split into two sublattices which only couple to one another, the partition
function is not invariant under a global flip of all the bonds, since there is no such correspondence between pairs of spin
configurations with and without global bond flip. There is similarly no analogous version of a gauge symmetry.

1.5 Anisotropic square lattice

We can generalize this duality relation to the case where horizontal and vertical bonds have different strengths Jx and
Jy respectively. This will allow us to see why the critical point of the transverse field Ising model [TFIM] (which is an
anisotropic limit of the 2D classical Ising model) is the same as that of the 2D classical model [1].

In the appropriate anisotropic limit of the 2D classical model, namely when Kx ∼ J and e−2Ky ∼ h for horizontal and
vertical couplings Kx and Ky and quantum exchange interaction J and transverse field h, the free energy of the classical
model at infinite size in the vertical direction agrees with the free energy of the quantum chain at zero temperature.

One can extend the argument for the location of the self-dual point above to the case where the couplings in the
horizontal and vertical directions are not the same; in this case the location of the critical point is fixed by

sinh 2Kx sinh 2Ky = 1. (15)
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Figure 3: The critical line in the space of Kx and Ky for the anisotropic Ising model on a square lattice. The isotropic
critical point and the critical point of the transverse field Ising model both lie on the the same critical line.

We can see that as Ky → ∞ this implies that Kx → 0 as Kx ≈ e−2Ky . This is exactly the critical point of the quantum
transverse field Ising model which occurs at J = h and therefore Kx = e−2Ky . Therefore see that the line of critical points
in (Kx,Ky) space connects both the TFIM critical point and the 2D classical Ising critical point. This is the heuristic
reason why the phase transitions in both models are in the same universality class.

2 Triangular lattice

We saw that duality relates the partition function on the lattice to a partition function on the dual lattice (defined by
placing nodes in the middles of plaquettes and edges crossing those in the primal lattice) at the “opposite” temperature.
The nice thing about the square lattice is that the lattice is self-dual, so this boils down to a relationship between the
partition function on the square lattice at low and high temperature. For a non-square lattice e.g. the trangular lattice,
duality will relate the partition function on the triangular lattice at high temperature to that of the honeycomb lattice
at low temperature, since the honeycomb and triangular lattices are dual to each other. However in order to find the
critical temperature of the Ising model on either triangular or honeycomb lattices, it is necessary to relate the high and
low temperature partition functions on the same lattice. This can be done with the use of the star triangle identity.

2.1 Duality relation

We start by writing an expression for the partition function on a triangular lattice as a high temperature expansion, which,
for N spins and therefore 3N bonds, is given by

Ztriang(N,K) = 2N cosh3N K
∑

C∈CP
tanh|C| K. (16)

Note that we can also write the partition function of an Ising model on a honeycomb lattice as a sum over the same set of
loops, with a low temperature expansion. However the honeycomb lattice dual to a triangular lattice with N spins contains
2N spins (and 3N bonds)—therefore we need 2N spins in the honeycomb lattice to get the same partition function:

Zhex(2N,K) = 2e3NK
∑

C∈CP
e−2K|C|. (17)

Therefore if we choose e−2K = tanhK∗ then there is a relation between the honeycomb and triangular lattice partition
functions: namely,

Zhex(2N,K) =
2

2−N/2 sinh3N/2(2K∗)
Ztriang(N,K∗). (18)

This establishes a duality between the partition function of the honeycomb lattice and triangular lattice at dual temper-
atures. As in the case of the square lattice, when sinh(2K∗) = 1 the free energies are equal. However, in contrast to the
square lattice case, this does not imply a critical point because the equivalence of free energies is for models on different
lattices. In order to find the critical point we will derive a relation between the partition function at the same temperature
on both the triangular and hexagon lattice; this relation is known as the star-triangle transformation.
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Figure 4: Above, we show the correspondence between two arrangements of spins in the partition function, where the
red spin is summed over to give effective pairwise interactions between the remaining blue spins. If this procedure is
generalized on the honeycomb lattice, we can relate the partition function of the Ising model on a honeycomb lattice with
that on a triangular lattice with half the number of spins (and the same number of bonds).

2.2 Star-triangle transformation

The idea is to consider the Ising partition function on a honeycomb lattice, and imagine summing over the spins on one of
the sublattices (since the honeycomb lattice is bipartite). Then one can write this remaining partition function in terms of
an effective Hamiltonian for pairwise interactions among the remaining spins on the other sublattice, which is a triangular
lattice.

Here we will discuss the isotropic example which is the simplest case in which all the bonds on both the honeycomb
and triangular lattices are the same. However in general this transformation can be modified to include cases where there
are three types of bonds on each of the triangular and honeycomb lattices: a more complete discussion is in Baxter’s
book [2].

The key point is that the partition function on the honeycomb lattice with coupling L is a sum over spins of the
expression ∏

i,j,k,l

eLσl(σi+σj+σk) (19)

where the l index is over spins on one of the sublattices, and the i, j, k denote the spins on the other sublattice which
neighbor spin l. We can sum over the sublattice inhabited by the {σl} to obtain an effective interaction between the σi,
σj and σk, as shown in Figure 4 where we sum over the red sublattice to get an effective model on the triangular lattice.
Recall that the triangular lattice partition function is a sum over spins of∏

i,j,k

eK(σiσj+σiσk+σjσk) (20)

where spins i, j, k live on the vertices of a triangular plaquette. To find the value of K for which Ztriang(N,K) is related
to Zhex(2N,L), we conduct the sum over the sublattice in the honeycomb containing the {σl}, and then require that the
remaining terms in Zhex match term-by-term with the terms in Ztriang, both of which contain only spins living on a single
triangular plaquette. Therefore we can write that

2 coshL(σi + σj + σk) = R expK(σjσk + σiσj + σiσk) (21)

where R and K depend on L in a way that is fixed by equality of the partition functions on the triangular and honeycomb
lattices. In order to ensure validity, we need

2 cosh 3L = Re3K (22)

2 coshL = Re−K , (23)

which come from considering all possible values of σi, σj and σk, i.e. all aligned or one out of three anti-aligned, yielding
two conditions on K and R.
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Therefore we have R2 = 4 coshL cosh 3Le−2K where L and K are related by cosh 3L = e4K coshL. We can solve this
system of equations to find that

R2 = 3e2K + e6K . (24)

We now have a relation between the partition function on the isotropic triangular and honeycomb lattices, which we can
use to find the critical point of the Ising model on both the triangular and honeycomb lattices. Namely, we can say that

Zhex(2N,L) = RNZtriang(N,K) with e4K =
cosh 3L

coshL
. (25)

Note that if K is large then L is large: this is therefore a relation between triangular and honeycomb partition functions
at similar temperatures. We can combine this relation with the duality relation (relating low and high temperatures) from
earlier to say that

Zhex(2N,L) =
2

2−N/2 sinh3N/2(2L∗)
Ztriang(N,L∗) = RNZtriang(N,K) with tanhL∗ = e−2L. (26)

Therefore the condition for criticality in the triangular lattice is

1

2
sinh3(2L∗)R2 = 1. (27)

Combined with the definition of R, and the relations tanhL∗ = e−2L and cosh 3L = e4K coshL, one can check that the
critical K that satisfies all these conditions is

sinh 2Kc =
1√
3
. (28)

To find the critical coupling for the honeycomb lattice, we again combine the two relations to see that

2Ztriang(N,K) = 2−N/2 sinh3N/2(2K)Zhex(2N,K∗) =
2

RN
Zhex(2N,L). (29)

Now the condition for criticality in the honeycomb lattice is

1

2
sinh3(2K)R2 = 1, (30)

along with the definition of R and tanhK∗ = e−2K as well as cosh 3L = e4K coshL. One can check that Lc satisfying
sinh 2Lc =

√
3 satisfies these conditions.

2.3 Summary

Using the star-triangle transformation in conjunction with the duality transformation, we were able to show that the
critical coupling is Kc =

1
2 arcsinh

√
3 in the honeycomb lattice and Lc =

1
2 arcsinh

1√
3
in the triangular lattice.

3 Disorder operator

We have seen that partition functions and therefore free energies above and below the critical temperature are related
by duality. What about other objects, like spin-spin correlation functions? This motivates the introduction of disorder
operators, whose correlation functions are the objects dual to spin-spin correlations. In particular, the correlation function
of disorder operators is defined on the dual lattice as

⟨µ0µr⟩K =
ZΓ(K

∗)

Z(K∗)
, (31)

where ZΓ refers to the partition function of the system with a line of bonds pierced by a path on the dual lattice between 0
and r flipped in sign. For a ferromagnetic Ising model, this flipping will introduce two frustrated plaquettes at the endpoint
of the string of flipped bonds, and will therefore increase the free energy such that the ratio of the partition functions is
exp(−∆F [Γ]/T ) where ∆F [Γ] is the increase in free energy caused by introducing the pair of frustrated plaquettes. In the
ferromagnet, introducing a pair of frustrated plaquettes costs energy, and so the disorder correlation function will decay
to zero as |r − r′| → ∞. However in the paramagnetic phase, domain wall tension is zero and so the disorder operator
asymptotes to 1 as |r− r′| → ∞ — since it acquires a nonzero expectation in the disordered phase, it is called the disorder
operator.

Kadanoff and Ceva [3] showed that the quantity ⟨µ0µr⟩ is exactly equal to the spin correlation function ⟨σ0σr⟩ for spins
on the dual lattice, at the dual temperature. In other words, if we want to calculate the correlation function of two spins,
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Figure 5: The primal lattice is shown in black and the dual lattice in red. The two spins whose correlation function we
wish to compute are shown as black circles. If we pick a path between the spins on the primal lattice (bold black) and
flip the signs of the bonds on the dual lattice that cross this path (the bold red bonds) then the ratio of this partition
function at the dual temperature with the flipped bonds to the regular partition function at the dual temperature gives
us the spin-spin correlation at the primal temperature.

we can calculate correlation function of disorder operators on the dual lattice at the dual temperature. This mapping
makes it apparent that the disorder correlation function asymptotes to 1 in the paramagnet, since when the primal lattice
is paramagnetic the dual lattice is ferromagnetic so the spin correlation function asymptotes to 1.

We can show that the Kramers Wannier dual of a correlation function of spins is a correlation function of disorder
operators as follows: we first show that the correlation function between two spins for some coupling K can be written (up
to factors of i) as a ratio of partition functions where the numerator has the couplings between the two spins transformed
as K 7→ K + iπ/2 along a path between the two spins, and the denominator is the regular partition function. Note that
which path we flip the bonds along does not matter, as a consequence of the gauge symmetry discussed above. We then
have

ZΓ(K) =
∑
{σ}

∏
⟨ij⟩/∈Γ

eKσiσj

∏
⟨ij⟩∈Γ

eKσiσj ei
π
2 σiσj︸ ︷︷ ︸

=iσiσj

(32)

where Γ is a path on the primal lattice connecting spins σ0 and σr, and ZΓ denotes the partition function with signs of
the bonds along this path flipped. Therefore

ZΓ(K)

Z(K)
= i|Γ|⟨σ0σr⟩K (33)

since all squared spins are 1 and so only the endpoints of Γ, at 0 and r, contribute meaningfully to the product in the
expression for ZΓ.

Now we note that making the transformation K 7→ K + iπ/2 on the primal lattice means that K∗ on the dual lattice
will change sign, since K∗ = arctanh[e−2K ]. Using the duality transformation Z(K) = 2

sinhN (2K∗)
Z(K∗) generalized to

the case where not all the bonds are the same strength, in which case it reads

Z({Kij}) =
2Z({K∗

ij})∏
⟨ij⟩

√
sinh 2K∗

ij

, (34)

we have

i|Γ|⟨σ0σr⟩K =
sinhN (2K∗)∏

⟨ij⟩/∈Γ

√
sinh 2K∗

ij

∏
⟨ij⟩∈Γ

√
− sinh 2K∗

ij

ZΓ(K
∗)

Z(K∗)
=

ZΓ(K
∗)

(−i)|Γ|Z(K∗)
(35)

where we have taken the negative branch of the square root. Therefore we have shown that

⟨σ0σr⟩K =
ZΓ(K

∗)

Z(K∗)
. (36)

In other words, spin correlations at a particular temperature are equal to the ratio of partition functions at the dual
temperature. These statements can be generalized for Ising models with arbitrary couplings, not just uniform couplings
as we have seen here.

4 Inhomogeneous bond strengths

What about the case of heterogenous bonds in the lattice? Here the high and low temperature expansions generalize
straightforwardly, and they give us two ways of computing the partition function. Now when we sum over loops, we care
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not only about the length of the loop, but about all the bonds in the loop. If we denote the coupling between spin i and
j as Jij and Kij = βJij then for the high temperature expansion we have

Z({Kij}) = 2N/2

∏
⟨ij⟩

coshKij

 ∑
C∈CP

∏
⟨kl⟩∈C

tanhKkl (37)

where the polygon configurations C live on the primal lattice.
The same procedure works for the low temperature expansion, where now the sum will be over exp(−2

∑
⟨kl⟩∈C Kkl).

However, if we want to define couplings K∗
ij via tanhK∗

ij = e−2Kij such that Z({Kij}) and Z({K∗
ij}) have the same

expression for the sum over loops, then one of the sets of couplings must contain imaginary values, since the {Kij} can be
of both signs. So the mapping between the two models related by duality is less straightforward. However, the high and
low temperature expansions do give us two different ways to write down the partition function for arbitrary collections of
bonds.

5 Potts duality

The KW duality can again be extended to consider 2D Potts models, of which we will be able to determine the critical
temperature. The Potts Hamiltonian is given by

βH = −K
∑
⟨ij⟩

δσiσj
, (38)

where the spins can take on one of q different values, and positive J assigns a negative energy to aligned spins. Note
that q = 2 recapitulates the Ising model (up to an overall shift and rescaling in the energy since the Kronecker delta is
0 or 1 rather than −1 or 1). As in the Ising case, we can construct a high and low temperature expansion of the Potts
partition function; on the square lattice this will be sufficient to determine the critical point since the primal and dual
lattices are the same. There is some additional cleverness needed to write the high temperature expansion as a sum over
closed polygons, since the Potts spins do not automatically lead to terms with a single spin summing to zero. The main
result [4] is that the duality relation between K and K∗ for which the partition functions are related is modified to

(eK − 1)(eK
∗
− 1) = q, (39)

which means that there is a transition at Kc = log(1 +
√
q). Note the factor of two difference between the result for the

Ising model when q = 2; this is due to the fact that the energy difference between aligned and anti-aligned is 1 for Potts
spins and 2 for Ising spins.

One can implement a generalization of the star-triangle relation for the q-state Potts model to get a relation between
the partition functions on a triangular and honeycomb lattice and, combined with the duality above, this allows exact
expressions for the transition temperature of the q-state Potts model on triangular and honeycomb lattices [5].

References

[1] John B Kogut. An introduction to lattice gauge theory and spin systems. Reviews of Modern Physics, 51(4):659, 1979.

[2] Rodney J Baxter. Exactly solved models in statistical mechanics. Elsevier, 2016.

[3] Leo P Kadanoff and Horacio Ceva. Determination of an operator algebra for the two-dimensional ising model. Physical
Review B, 3(11):3918, 1971.

[4] Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.

[5] D Kim and RI Joseph. Exact transition temperature of the potts model with q states per site for the triangular and
honeycomb lattices. Journal of Physics C: Solid State Physics, 7(8):L167, 1974.

8


	Square lattice
	High temperature expansion
	Low temperature expansion
	Duality
	Gauge transformations
	Anisotropic square lattice

	Triangular lattice
	Duality relation
	Star-triangle transformation
	Summary

	Disorder operator
	Inhomogeneous bond strengths
	Potts duality

