
Free fermions and spin chains

Mapping spin models onto models of free fermions is a powerful tool in condensed matter. Here we will explore a
mapping from quantum spins to fermions in two different cases: the XY spin chain and the transverse field Ising model.
The utility of our mapping stems from the fact that Hamiltonians describing free particles, be they fermions or bosons,
are exactly diagonalizable. We will use these examples to better understand second quantization, which allows us to build
antisymmetry requirements of the wavefunction into our representation of a quantum state.

To begin, we examine what it means to map any model onto a model of fermions (or bosons — though the rest of the
discussion will focus on the mapping to fermions). The key property of a quantum many-body wavefunction is the com-
mutation/anticommutation properties determined by the properties of the particles described by the wavefunction. Often,
when many-body wavefunctions are introduced, these requirements are enforced by writing the many-body wavefunction
as a Slater determinant/permanent of a matrix of single-particle wavefunctions. However the resulting expressions are
at best cumbersome to work with, and at worst totally intractable. In the second quantized formalism, we build these
requirements of symmetry/antisymmetry of the wavefunction into its definition.

When we specify a quantum state, we do so by building up our state from the vacuum state with the application
of creation operators at various quantum numbers (which could indicate position, momentum, etc). These creation
operators, and their adjoints, the annihilation operators, can be constructed such that the many-body wavefunctions that
they construct automatically satisfy the symmetry/antisymmetry requirements under exchange of particles (for bosons
and fermions respectively). What are the requirements that these operators must satisfy in order to produce states with
the desired properties? For bosons, the state is symmetric under the exchange of any pair of particles, and therefore
the creation and annihilation operators commute except when creation and annihilation is done at the same site. For
fermions, by contrast, antisymmetry is the norm and therefore creation and annihilation operators anticommute except
when applied at the same site. Therefore if we have creation and annihilation operators ci and c†i , where i is a spatial
index, then the bosonic commutation relations are

[ci, cj ] = 0; [c†i , c
†
j ] = 0; [ci, c

†
j ] = δij , (1)

while for fermions the anticommutation relations are

{ci, cj} = 0; {c†i , c†j} = 0; {ci, c†j} = δij , (2)

where the square brackets represent commutation [A,B] = AB − BA and the curly brackets represent anticommutation
{A,B} = AB +BA.

1 Jordan Wigner Transformation

For the rest of these notes we will be working with spin 1
2 particles, for which the spin operators in the x, y and z directions

are respectively

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3)

1.1 Single spin

Let us now consider a single spin- 12 degree of freedom. We will work as usual in the z basis so that our basis vectors are

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
, (4)

which have eigenvalues of σz of ±1 respectively. The insight of Jordan and Wigner is that we can think of spin up as being
a site occupied by a fermion, and spin down as being an empty site. Then we can construct any basis state by repeated
application of creation operators at different sites on the state of all spins down.

Conveniently, we can explicitly write down a representation of these creation operators for a single spin as

f =
1

2
(σx − iσy) =

(
0 0
1 0

)
; f† =

1

2
(σx + iσy) =

(
0 1
0 0

)
; f†f =

(
1 0
0 0

)
. (5)

The creation operators can then be defined as c = f , c† = f†. Then one can explicitly check that {c, c} = {c†, c†} = 0 and
{c, c†} = 1. Therefore these operators are fermionic operators. The operators f and f† are known as spin lowering and
raising operators respectively and sometimes denoted by S− and S+.
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1.2 Multiple spins

One can now extend this picture to multiple spins. In this case we need to define creation operators acting on a particular
spin, say at position i. The temptation would be to define ci = fi, c

†
i = fi, in analogy with the previous definition for a

single spin. However, the spin lowering/raising operators are not fermionic operators. In particular, they commute rather
than anticommute at different sites. However, we can define creation and annihilation operators c and c† which obey
canonical fermion anticommutation relations, in terms of the spin operators. The intuition is as follows: currently fi and
fj commute for i 6= j because fi is acting with the identity at site j and fj is acting with the identity at site i, and the
f ’s commute with the identity. If we want them to anticommute, we need to attach to fj an operator acting at site i that
anticommutes with fi, or vice versa

What is such an operator? Check that eiπf
†f anticommutes with f . Then the idea that Jordan and Wigner had was

the following: append to fi a string of eiπf
†f ’s acting on all the sites to the left of i. Then, for any i < j (without loss of

generality), there will be an eiπf
†f acting on site i from cj , and therefore ci and cj will anticommute! Therefore we have

ci = exp

iπ∑
j<l

f†l fl

 fi; c†i = f†i exp

−iπ∑
j<l

f†l fl

 . (6)

Note that eiπf
†f is proportional to σz, as one can see from expanding out the form of f†f , which is a diagonal matrix and

can be exponentiated easily. This transformation can be inverted since we have c†i ci = f†i fi. In particular we have

fi = exp

iπ∑
j<l

c†l cl

 ci; f†i = c†i exp

−iπ∑
j<l

c†l cl

 . (7)

These operators ci are known as Dirac fermions. The ordering of the operators in the definition of ci and c†i is
important, since fermionic operators do not commute, even at different sites (they anticommute).

2 XY spin chain

2.1 Fermionization

We have shown that one can construct fermionic creation and annihilation operators out of spin operators — though these
fermionic operators are highly nonlocal in the spin operators. Therefore, any fermionic Hamiltonian written in terms of
creation and annihilation operators can be rewritten as a nonlocal Hamiltonian of a spin- 12 chain, and any spin- 12 one
dimensional Hamiltonian can be written in terms of fermionic operators.

How do we do this in an explicit example? Consider the Hamiltonian of a 1D lattice of spin 1
2 particles with magnetic

interactions in both the X and Y directions:

H = Jx
∑
i

σxi σ
x
i+1 + Jy

∑
i

σyi σ
y
i+1. (8)

Throughout, we will be cavalier about boundary conditions and assume translation invariance. Periodic boundary con-
ditions actually introduce an extra term into the Jordan-Wigner transform of this Hamiltonian, but this term does not
contribute in the infinite-system limit, and we will not deal with it here.

In terms of f = 1
2 (σx − iσy) and f† = 1

2 (σx + iσy), we can write this Hamiltonian as

H = Jx
∑

(fi + f†i )(fi+1 + f†i+1)− Jy
∑
i

(f†i − fi)(f†i+1 − fi+1), (9)

which simplifies [remembering that the f ’s commute at different sites!] to

H = (Jx − Jy)
∑
i

[
fifi+1 + f†i+1f

†
i

]
+ (Jx + Jy)

∑
i

[
f†i fi+1 + f†i+1fi

]
. (10)

We can then write the lowering and raising operators f in terms of fermionic operators, in order to get

H = (Jx − Jy)
∑
i

cie
iπnici+1 + (Jx + Jy)

∑
i

c†ie
iπnici+1 + h.c. (11)

where we have introduced ni = c†i ci, the number operator. Now we can use the fact that e±iπni = 1− 2f†i fi = 1− 2c†i ci,
which can be seen from the explicit matrix form of f above. Note that the ni commute with all operators at different
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sites, since the two minus signs obtained from commuting an ni past a fermionic operator cancel. Substituting this in
above and commuting operators past each other so that we can cancel c2i and (c†i )

2, which both vanish, we obtain a minus
sign on the term proportional to Jx − Jy, which we can absorb by commuting ci and ci+1 at the expense of a minus sign.
Then our Hamiltonian in terms of fermion operators is

H = (Jx − Jy)
∑
i

ci+1ci + (Jx + Jy)
∑
i

c†i ci+1 + h.c. (12)

Note that this Hamiltonian does not conserve total particle number: it does not commute with
∑
i c
†
i ci because of the

terms proportional to Jx − Jy. [As an exercise, show explicitly that c†i ci+1 + c†i+1ci commutes with c†i ci + c†i+1ci+1, but

cici+1 + c†i+1c
†
i does not.] However in the isotropic case Jx = Jy = J/2, then we obtain

H = J
∑
i

c†i ci+1 + h.c. (13)

This Hamiltonian does conserve particle number. Although it is not necessary to conserve particle number in order to
diagonalize a free fermionic Hamiltonian, for now we will work in the isotropic case, since things are a bit simpler. Note
that our Hamiltonian is free fermionic in the sense that it is quadratic in fermionic operators — this means that the
Hamiltonian does not have interactions but only hopping between different sites.

2.2 Fourier transformation of isotropic model

For now we see that our model has the form
H = J

∑
i,j

c†iAijcj , (14)

where Aij depends only on |i − j|: in particular Aij = δ|i−j|,1. This translation invariance should be alerting us to the
utility of Fourier transformation, which we can use to move to a basis where A is diagonal, so that we can write our
Hamiltonian as

H = J
∑
k

εkη
†
kηk (15)

for fermionic operators ηk which are linear combinations of the ci. This would diagonalize the Hamiltonian in the
occupation number basis, and allow us to read off the dispersion relation as εk as a function of wavenumber k.

Let us define the η as the Fourier transform of the c, so that

cn =
∑
k

eikRnηk; ηk =
∑
n

e−ikRncn. (16)

Then we can see that the Hamiltonian can be rewritten as

H = J
∑

n,m,k,k′

[
eikRn−ik′Rmη†kηk′Anm

]
. (17)

Using the fact that Anm = δ|n−m|,1, and doing the sum over n and m while assuming that the lattice constant is
Rn+1 −Rn = `, we have

H = J
∑
k,k′,n

[
eikRn−ik′(Rn+a) + eik(Rn+a)−ik′Rn)

]
η†kηk′ . (18)

By doing the sum over n, we get a delta function δk,k′ , and so our Hamiltonian can be written as

H = 2J
∑
k

εkη
†
kηk, εk = cos k`. (19)

This tells us that the dispersion relation i.e. the energy of an excitation with wavenumber k is 2J cos k`. For a ferromagnet,
with the way that we have defined the Hamiltonian, the J should be negative, and so for |k`| < π/2, excitations with
wavevector k will reduce the energy of a state. The ground state is then the state that we get by applying all these
energy-reducing operators to the vacuum state. The corresponding ground state energy density is

E0 =
2J

L

∑
|k|<π/2`

εk ≈ 2J

∫ π/2

−π/2

d(k`)

2π
cos k`. (20)
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The magnetization in the ground state is related to the number of fermions in the chain, since ni = 1
2 (1+σz). Therefore the

magnetization is 1
L

∑
i σ

z
i = 2

L

∑
i ni− 1. Now we can calculate the magnetization in the ground state, by first calculating

the fermion density N/L in the ground state:

N0

L
=

1

L

∑
|k|<π/2`

1 ≈
∫ π/2

−π/2

d(k`)

2π
=

1

2
. (21)

Therefore the magnetization in the ground state is 2× 1
2 − 1 = 0.

2.3 Anisotropic chain

What about the case where Jx 6= Jy? In this case the Hamiltonian no longer commutes with
∑
i ni and therefore does not

conserve particle number. Therefore the eigenstates of H cannot be written as a linear combination of creation operators
acting on the vacuum state. To find the eigenstates of H we need to introduce another transformation which will make
the form of these states clearer. We have

H = (Jx − Jy)
∑
i

ci+1ci + (Jx + Jy)
∑
i

c†i ci+1 + h.c. (22)

which we can write as
H = J

∑
i

[
c†i ci+1 + γci+1ci

]
+ h.c. (23)

for γ =
Jx−Jy
J which is zero in the isotropic case Jx = Jy. Fourier transforming, we have

H = 2J
∑
k

cos k`η†kηk + γJ
∑
k

(
e−ik`ηkη−k + eik`η†−kη

†
k

)
. (24)

To make things look more symmetrical, we can sum over only positive k, and write

H = 2J
∑
k>0

cos k`(η†kηk + η†−kη−k) + 2iγJ
∑
k>0

sin k`(η−kηk − η†kη
†
−k). (25)

However, due to the presence of the terms which break particle number conservation, this Hamiltonian is not diagonal.
In order to diagonalize this Hamiltonian we have to make what is called a Bogoliubov transformation; which involves
rotation c and c† into each other, defining new creation and annihilation operators as linear combinations of c and c† such
that canonical fermionic anticommutation is still satisfied, but our Hamiltonian is now diagonal.

2.4 The Bogoliubov transformation

The Bogoliubov transformation can be illustrated with a generic free fermionic (i.e. quadratic) Hamiltonian which does
not conserve particle number. The transformation consists of rotating creation and annihilation operators into each other
in order to diagonalize the Hamiltonian. Let us consider a particular term in the Hamiltonian with the form

H = Ω(a†a+ b†b) + λ(a†b† + ba), (26)

where Ω is coefficient for the diagonal piece and λ is the coefficient for the off-diagonal piece. We define transformed
operators α and β according to

a = uα− vβ† (27)

b = uβ + vα†, (28)

where u and v are complex numbers that we will choose in order to make our transformation useful. We will assume
that α and β obey canonical fermion anticommutation relations. Therefore, in order for the α and β to obey canonical
anticommutation relations, we need |u|2 + |v|2 = 1. Let us assume that u and v are real — then we can parameterize
them as u = cos(θ/2) and v = sin(θ/2), which gives

a = cos(θ/2)α− sin(θ/2)β† (29)

b = cos(θ/2)β + sin(θ/2)α†. (30)

We can plug these into the Hamiltonian and use fermionic commutation relations to find, after some algebra, that

H = 2Ω sin2(θ/2)− λ sin θ + (Ω cos θ + λ sin θ)(α†α+ β†β) + (λ cos θ − Ω sin θ)(α†β† + βα). (31)
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Now we would like to choose θ so that the off-diagonal part, proportional to α†β† + βα, vanishes. Therefore we should
choose tan θ = λ/Ω. With this choice, sin θ = λ/

√
λ2 + Ω2 and cos θ = Ω/

√
λ2 + Ω2, and sin2 θ

2 = 1
2 (1 − Ω/

√
λ2 + Ω2).

Therefore our Hamiltonian becomes

H = Ω−
√
λ2 + Ω2 +

√
λ2 + Ω2(α†α+ β†β). (32)

We will now proceed to use this formula to diagonalize the XY spin chain.

2.5 Back to the anisotropic XY chain

Identifying the terms in Equation 25 with the form in Equation 26, we see that

Ω = 2J cos k`, λ = 2γJ sin k`, a = eiπ/4ηk, b = eiπ/4η−k. (33)

Therefore we must choose tan θ = γ tan k`. If we introduce the rotated creation and annihilation operators ξk and ξ−k,
defined according to Equation 29 (analogous to α and β), then we find a Hamiltonian

H =
∑
k>0

2J
[
cos k`− εk + εk(ξ†kξk + ξ†−kξ−k)

]
, εk =

√
γ2 sin2 k`+ cos2 k`. (34)

Since εk = ε−k, we can rewrite this as

H = E0 + 2J
∑
k

εkξ
†
kξk, (35)

where E0 is just a constant shift given by E0 = 2J
∑
k>0(cos k`− εk).

Since the dispersion εk is always positive, we know that the ground state has to be the vacuum, since there are no
excitations which will lower the energy of the vacuum. The energy of the vacuum is given by E0 as defined above. Note
that when γ = 0, E0 reduces to −2J

∑
0<k<π cos |k`| which is same as the result we got for the XX chain (the isotropic

limit). However, note that the vacuum in this Boguliobov-transformed basis is not the same as the vacuum in the original
η basis. In particular, the magnetization (related to the expectation of the η number operator) may be nonzero even if
the state is the vacuum in the ξ basis.

What happens if we plot the dispersion relation as a function of k` for various values of γ? We see in Figure 1 that
for γ 6= 0, the lowest-energy excitation is larger than zero. However for γ = 0, the lowest energy excitation is arbitrarily
close to zero: the system becomes gapless, meaning that there is no gap between the ground state energy and the lowest
excited state. The distinction between gapped and gapless states is a hugely important one in condensed matter, and
gapless ground states are often associated with critical points. Here the point γ = 0 is associated with an isotropic spin
chain and does not have long range order, and the ground states for γ < 0 and γ > 0 have order in the Y and X spin
components respectively.
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1

Figure 1: The dispersion relation for the anisotropic XY model, for a few values of γ. Note that the dispersion relation
depends only on |γ|, though γ is between −1 and 1.

3 Transverse field Ising model

Now consider a different model Hamiltonian: the transverse field Ising chain. Here there is a coupling in the z component
of spins at neighboring sites, and there is a transverse field in the x direction that destroys order in the z direction if it is
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strong enough. In fact, the ordering transition of the ground state as the strength of the transverse field decreases is the
same as that of the 2 dimensional classical Ising model as temperature decreases. It is often simpler to study the critical
properties of the quantum model than the classical model. The Hamiltonian is

H = J
∑
i

σxi σ
x
i+1 + h

∑
i

σzi (36)

= J
∑
i

(fi + f†i )(fi+1 + f†i+1) + h
∑
i

σzi . (37)

Writing the spin Hamiltonian in terms of the fermion operators c and c†, we find that

H = J
∑
j

[
cje

iπnjcj+1 + c†je
iπnjc†j+1 + c†je

iπnjcj+1 + cje
iπnjc†j+1

]
+ h

∑
j

(1− 2c†jcj). (38)

Note that we can write the Hamiltonian as

H = J
∑
j

[
c†jcj+1 + cjcj+1

]
+ h

∑
j

[
1

2
− c†jcj

]
+ h.c. (39)

This Hamiltonian does not conserve particle number because of the term cjcj+1 and its conjugate. However, it does
preserve parity of particle number, since particles are always created or annihilated in pairs.

As before, we need to Fourier transform in order to diagonalize this Hamiltonian. Doing out the Fourier transform as
before, defining ηk as the Fourier transform of the cj , we find that

H =
∑
k

[
(−2h+ 2J cos k`)η†kηk + J(e−ik`ηkη−k + eik`η†−kη

†
k)
]
. (40)

As before, we can write this Hamiltonian more symmetrically as

H =
∑
k>0

[
(2J cos k`− 2h)(η†kηk + η†−kη−k) + 2iJ sin k`(η−kηk − η†kη

†
−k)
]
. (41)

This Hamiltonian is now in a form where we can do the Boguliobov transformation as we did for the XY chain above.
Identifying the terms in Equation 41 with the form in Equation 26, we see that

Ω = 2J cos k`− 2h, λ = 2J sin k`, a = eiπ/4ηk, b = eiπ/4η−k. (42)

Using Ω = 2J cos k`− 2h and λ = 2J sin k`, we obtain the Boguliobov-transformed Hamiltonian

H =
∑
k>0

2J

[
cos k`− h

J
− εk + εk(ξ†kξk + ξ†−kξ−k)

]
, εk =

√
1− 2h/J cos k`+ (h/J)2. (43)
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0.0
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0.5
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1.5

Figure 2: The dispersion relation for the transverse field Ising model, for a few values of h/J .

Plotting this dispersion relation (Figure 2), one sees that the lowest energy excitations above the Boguliobov vacuum
state become infinitesimal at h = J , which is the critical point of the transverse field Ising model, at which the ground
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state is gapless. The energy density of the ground state (the vacuum state in the Boguliobov basis) is given by

E0 =
2J

L

∑
0<k<π/`

(
cos k`− h

J
− εk

)
≈ −2h− 2J

∫ π

−π

d(k`)

2π

√
1− 2h/J cos k`+ (h/J)2. (44)

It turns out that in the appropriate anisotropic limit of the 2D classical model, namely when Kx ∼ J and e−2Ky ∼ h
for horizontal and vertical couplings Kx and Ky respectively, the free energy of the classical model at infinite size in the
vertical direction agrees with the free energy of the quantum chain at zero temperature.
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