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1 Introduction

The Bethe Ansatz has found widespread use in questions from condensed matter to stochastic processes to high energy
physics. But what is it? At the most elementary level, it as a guess for the form of the eigenvectors of a matrix that in
some cases allows us to diagonalize a matrix with certain properties, thereby yielding its complete spectrum. However
the Bethe ansatz, after its initial invention by Hans Bethe in 1931, has taken on a life of its own and essentially underlies
the field of integrable systems: in some sense “integrable” is synonymous with “Bethe ansatz solvable.” In these notes we
will outline the coordinate Bethe ansatz in the context that led to its creation, and deploy it in considerable detail. We
will also discuss the highly nontrivial fact that the Bethe ansatz works at all, and what this means in terms of simplifying
the problem we wish to solve. The problem we discuss below is that of finding the spectrum of the Heisenberg spin 1/2
XXX chain: a model of a one dimensional quantum magnet with nearest-neighbor isotropic spin interactions.

We do not assume any knowledge of the Bethe ansatz, but it will be helpful to be familiar with the quantum mechanics
of spin: in particular the Pauli spin matrices, and the representation of quantum mechanical Hilbert space as a tensor
product of local spaces. We should state at the outset that if one’s goal is to understand the Bethe ansatz in general
without an interest in quantum mechanics, there are similarly illuminating use cases for diagonalizing the Markov matrix
of particular families of stochastic processes — we will discuss the latter in a separate set of notes. For now we will proceed
with the quantum mechanical problem, which will soon be converted into a problem in linear algebra.

2 The Heisenberg spin chain

The model of interest here will be the Heisenberg spin 1/2 chain, which is a quantum model of magnetism in one dimension.
Its Hamiltonian can be represented as a sum of local products of spin operators:

H = J

L∑
i=1

Si · Si+1, (1)

where the vector Si denotes the spin operator (Sxi , S
y
i , S

z
i ) on site i, comprised of the spin operators in each of the spatial

directions. We will use periodic boundary conditions so that L+ 1 is identified with 1. Hilbert space grows exponentially
with the number of particles, and so H is fact a 2L × 2L matrix, as we will see explicitly below. The spin operators on a
particular site of the chain are given by

Sαi = 11 ⊗ · · · ⊗ 1i−1 ⊗ σα ⊗ 1i+1 ⊗ · · · ⊗ 1L, (2)

for α = x, y, z, with σx, σy, σz representing the Pauli spin 1/2 matrices, which are 2× 2 matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3)

Here 1 is a 2×2 identity matrix, irrespective of its index, which simply labels the site on which it acts. The tensor product
symbol ⊗ is a way of combining the degrees of freedom from each of the individual Hilbert spaces of the spins into one
large Hilbert space for the whole system. Explicitly in a matrix representation, we have

(
a11 a12
a21 a22

)
⊗
(
b11 b12
b21 b22

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 . (4)

The sign of J in Equation 1 determines whether the chain is ferromagnetic or antiferromagnetic. Note the similarity
between this model and the one dimensional classical Ising model. The difference is that here each spin has three
components in the x, y and z directions respectively, and these are represented by non-commuting operators.

3 Constructing the Bethe ansatz

As discussed earlier, we want to find the eigenvalues and eigenvectors of the Hamiltonian defined in Equation 1. This
will give us the eigenstates and corresponding energies of the magnet, and in principle will fully solve the system and its
dynamics, allowing us to calculate whatever we want. Things will not quite turn out to be that nice, but we can still
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make significant progress with the Bethe ansatz. The key will be to think about how the Hamiltonian operator changes
a state of the system when applied to it. We know that a state of the system will be a 2L-dimensional vector. Let us
work in the z basis, in which case our basis vectors are states of the system described by the z component of the spin at

each site, which can be 1 or −1, corresponding to

(
1
0

)
or

(
0
1

)
respectively. These states can be represented as a tensor

product of spins ↑ and ↓ at each site, in which case we might use a shorthand like | ↑↑↓〉 for a chain of three spins, which
corresponds to state vector

| ↑↑↓〉 = | ↑〉 ⊗ | ↑〉 ⊗ | ↓〉 =

(
1
0

)
⊗
(

1
0

)
⊗
(

0
1

)
. (5)

We will try to form eigenvectors of our Hamiltonians are linear combinations of states of this form. To simplify
notation, we will use the notation |n1, . . . , np〉 to denote a state with down spins at sites on the chain except for the sites
n1, . . . np. Explicitly, these means that for L = 3, we have |1〉 = | ↓↑↑〉, and |1, 3〉 = | ↓↑↓〉, etc. Eventually we will want
to take L to be very large. Then states with, e.g. one spin flipped relative to all the others will correspond to the high
(or low) edge of the density of states for positive (or negative) J . We will think of these states as “excitations” of p spins
away from our reference configuration of all spins up.

3.1 Single spin excitations

First, we would like to study, for arbitrary L, how we might construct an eigenfunction of H out of a linear combination
of states with p = 1, i.e. a single spin pointing down while all others point up. Such a state can be notated as |n〉 where
n is the index of the site at which the down-spin is located. The crucial observation here is that

H|n〉 = (L− 2)|n〉+ 2[|n− 1〉+ |n+ 1〉 − |n〉]. (6)

How can we see this? Thinking of the Hamiltonian H as a sum of many local products of spin operators acting on sets of
neighboring spins, as in Equation 1, most of the bonds (L− 2 of them) will simply be acted on by the identity operator.
The nontrivial contribution will come from the bonds (on either side of the nth site) that are not satisfied. By explicit
computation with the 4 dimensional subspace of Hilbert space corresponding to two neighboring spins which are oppositely
oriented, we can come to the conclusion above.

Now we see that the family of states indexed by n has the nice property that we can explicitly write down the operation
of H on a single one of these states in terms of other states indexed by different n. This will allow us to solve for eigenstates
of H as a linear combinations of the |n〉. We guess an eigenstate |Ψ〉 =

∑
n z

n|n〉. Therefore the condition on |Ψ〉 in order
for it to be an eigenstate of H with eigenvalue λ is

λ|Ψ〉 =
∑
n

[
zn(L− 4) + 2zn−1 + 2zn+1

]
|n〉. (7)

Another way to notate this (which we will use hereafter) is if we define ψ(n) to be the coefficient in front of |n〉. Then
we can write

λψ(n) = (L− 4)ψ(n) + 2ψ(n− 1) + 2ψ(n+ 1). (8)

We additionally have ψ(n + L) = ψ(L) from periodic boundary conditions. Plugging in the ansatz ψ(n) = zn tells us
that λ = L− 4 + 2z−1 + 2z from the eigenvalue conditions, and zL = 1 from periodicity. Therefore we find eigenvectors if
z = ei2πk/L, with corresponding eigenvalues λk = L− 4 + 2z−1 + 2z = L+ 4[cos(2πk/L)− 1], for k ∈ {1, . . . , L}.

We have therefore found L eigenvector-eigenvalue pairs for our Hamiltonian in terms of linear combinations of the
|n1, . . . np〉 states with p = 1. However this is not the whole story — in particular there should be 2L eigenvector-
eigenvalue pairs in total. Below we will outline the procedure for finding the rest of these, which leads us to the Bethe
ansatz.

3.2 Two-spin excitations

Here we will outline the case of p = 2: that is, we will try to form an eigenstate from a linear combination of states with
two down-spins somewhere in the chain of up-spins. These states can be notated as |n,m〉 with 1 ≤ n < m ≤ L. Following
our approach for p = 1, the crucial observation is that

H|n,m〉 = (L− 8)|n,m〉+ 2[|n+ 1,m〉+ |n− 1,m〉+ |n,m+ 1〉+ |n,m− 1〉] (9)

H|n, n+ 1〉 = (L− 4)|n, n+ 1〉+ 2[|n− 1, n+ 1〉+ |n, n+ 2〉]. (10)

This first of these observations is a natural generalization of Equation 6 to the case p = 2, which assumes the two down-
spins are spatially separated and therefore act just like isolated single-spin excitations. However we need to separately
treat the case where these two spin excitations are neighbors, and that is where the second equation comes in. In this
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case we have two down-spins next to each other in the chain of up-spins, and accordingly the number of unsatisfied bonds
is two. By considering the local action of the successive terms in the Hamiltonian on our chain carefully, we can come up
with the second equation above. We will refer to this as a “collision condition,” since it treats the case where our two spin
excitations “collide” in space. Rewriting these two conditions in our alternative notation gives

λψ(n,m) = (L− 8)ψ(n,m) + 2ψ(n− 1,m) + 2ψ(n+ 1,m) + 2ψ(n,m− 1) + 2ψ(n,m+ 1) (11)

λψ(n, n+ 1) = (L− 4)ψ(n, n+ 1) + 2ψ(n− 1, n+ 1) + 2ψ(n, n+ 2). (12)

In addition, periodic boundary conditions give us zL1 z
L
2 = 1 and ψ(n,L + 1) = ψ(1, n). [Think about why this second

statement is the correct boundary condition!]
Now we make the ansatz

|Ψ〉 =
∑

1≤n<m≤L

(Azn1 z
m
2 +Bzn2 z

m
1 )|n,m〉 =⇒ ψ(n,m) = Azn1 z

m
2 +Bzn2 z

m
1 . (13)

In addition to determining z1 and z2, we need to determine the ratio A/B (the overall amplitude of the eigenvector is a
free parameter).

Plugging in this ansatz, we conclude that

λ = L− 8 + 2

(
z1 + z2 +

1

z1
+

1

z2

)
. (14)

Then from the cancellation condition we get
A

B
= −2z1 − 1− z1z2

2z2 − 1− z1z2
. (15)

The boundary conditions then give zL1 z
L
2 = 1 and

A

B
=
z2z

n
1 − zn2 zL+1

1

zn1 z
L+1
2 − z1zn2

= zL1 , (16)

where the second equality comes from using the fact that zL1 z
L
2 = 1. This allows us to eliminate the ratio A/B, and we

obtain two equations that constrain z1 and z2:

zL1 z
L
2 = 1 and zL1 = −z1z2 − 2z1 + 1

z1z2 − 2z2 + 1
. (17)

Note that if we want we can write these symmetrically for z1 and z2, namely

zLi = −
2∏
k=1

zizk − 2zi + 1

zizk − 2zk + 1
. (18)

Solutions to these equations will allow us to determine the eigenvalues and eigenvectors which can be built out of two-spin
excitations!

3.3 Three-spin excitations

So far we have systematically found the eigenvectors that can be built from states with one and two spins excited from
the reference configuration. This has hinged on the appropriate ansatz for the form of these eigenvectors, which in essence
constituted a proto-Bethe ansatz in each of their respective cases. However the nature of the Bethe ansatz is more apparent
when we consider three-spin excitations. Doing out the three-spin case is a bit of a slog, but it is somewhat illustrative
about the general case. Having noticed some patterns in the one and two-spin excitation cases above, we can write down
the following conditions for our would-be coefficients for the three-spin excitations that must be satisfied to construct and
eigenvector:

λψ(n,m, l) = (L− 12)ψ(n,m, l) + 2[ψ(n− 1,m, l) + ψ(n+ 1,m, l)+ (19)

ψ(n,m− 1, l) + ψ(n,m+ 1, l) = ψ(n,m, l − 1) + ψ(n,m, l + 1)]

λψ(n, n+ 1, l) = (L− 8)ψ(n, n+ 1, l)+ (20)

2[ψ(n− 1, n+ 1, l) + ψ(n, n+ 2, l) + ψ(n, n+ 1, l − 1) + ψ(n, n+ 1, l + 1)]

λψ(n,m,m+ 1) = (L− 8)ψ(n,m,m+ 1)+ (21)

2[ψ(n− 1,m,m+ 1) + ψ(n+ 1,m,m+ 1) + ψ(n,m− 1,m+ 1) + ψ(n,m,m+ 2)]

ψ(n+ L,m+ L, l + L) = ψ(n,m, l) (22)

ψ(n,m,L+ 1) = ψ(1, n,m). (23)

3



The first of these treats the cases where the three excitations are separated along the length of the chain. The second
and third handle the two body collisions, and the last two specify periodic boundary conditions. The goal is to make an
ansatz for ψ(n,m, l) which allows us to satisfy these conditions. However, first we will point out a very important fact.

3.3.1 Three body collision is redundant

In the above, we have two collision conditions instead of just one as we had in the two-spin excitation case: this is because
there are two possible two-body collisions when we have three spin excitations along our chain. However there is a third
collision, a three-body collision, that can also occur for states where all three spins are neighboring each other, which
corresponds to coefficients of form ψ(n, n+ 1, n+ 2). The additional condition for these coefficients is

λψ(n, n+ 1, n+ 2) = (L− 4)ψ(n, n+ 1, n+ 2) + 2ψ(n− 1, n+ 1, n+ 2) + 2ψ(n, n+ 1, n+ 3). (24)

This would seem to complicate our problem, as we now have an addition condition to satisfy. However, here something
very nice happens. One can see by explicit calculation that the three-body collision condition is automatically satisfied if
we have the first three conditions from above satisfied, which are just the generic case and the two body collisions. The
way to see this (which the reader should try!) is to plug in the appropriate n,m and l so that one gets an equation for
ψ(n, n+ 1, n+ 2). For example, in the first equation, one should set m = n+ 1, l = n+ 2. The fact that the three body
collision condition is automatically satisfied by the two body conditions is the key to the solvability (the integrability) of
this model.

3.3.2 Finding the Bethe equations

Having determined that we do not need the three-body collision condition in order to fully diagonalize our matrix, we will
proceed to do without it. For the three-spin excitation case, we make the ansatz

ψ(n,m, l) = Azn1 z
m
2 z

l
3 +Bzn1 z

m
3 z

l
2 + Czn2 z

m
1 z

l
3 +Dzn2 z

m
3 z

l
1 + Ezn3 z

m
1 z

l
2 + Fzn3 z

m
2 z

l
1. (25)

This shows the structure of the Bethe ansatz: it is a sum of p! terms of varying amplitudes, and our job is to find the
ratios of the p! amplitudes as well as the complex numbers z1, . . . , zp.

Plugging in our ansatz to the three-spin equations, λ can be found to be λ = L− 12 + 2
(
z1 + z2 + z3 + 1

z1
+ 1

z2
+ 1

z3

)
and therefore can be eliminated, and one of the boundary conditions gives zL1 z

L
2 z

L
3 = 1. Then there are three remaining

conditions. These conditions must be satisfied no matter the values of the {zi} and n,m, l. Therefore we can isolate terms
of like powers in z1, z2, z3 and set their coefficients to 0. This gives us a number of conditions on the amplitudes A, . . . , F .
In particular we find that

A

C
= −z1z2 − 2z1 − 1

z1z2 − 2z2 − 1
,

D

F
= −z2z3 − 2z2 + 1

z2z3 − 2z3 + 1
,

B

E
= −z1z3 − 2z1 + 1

z1z3 − 2z3 + 1
, (26)

A

B
= −z2z3 − 2z2 + 1

z2z3 − 2z3 + 1
,

C

D
= −z1z3 − 2z1 + 1

z1z3 − 2z3 + 1
,

E

F
= −z1z2 − 2z1 + 1

z1z2 − 2z2 + 1
. (27)

Note that we have found 6 conditions even though just 5 would have been enough to uniquely specify all the amplitudes.
This hints at some kind of algebraic structure between the amplitudes. If we start at one amplitude, say A, and find its
relationship to, say E, there is more than one way to do this, and these must yield the same answer.

Thus far we have used all the conditions (eigenvalue condition, two collision conditions, and ψ(n+ L,m+ L, l + L) =
ψ(n,m, l)) except the second periodic boundary condition, which is ψ(n,m,L + 1) = ψ(1, n,m). Enforcing this last
condition will allow us to obtain a closed set of equations for the {zi}. This last condition reads

0 = A(zn1 z
m
2 z

L+1
3 − z1zn2 zm3 ) +B(zn1 z

L+1
2 zm3 − z1zm2 zn3 ) + C(zm1 z

n
2 z

L+1
3 − zn1 z2zm3 )+ (28)

D(zL+1
1 zn2 z

m
3 − zm1 z2zn3 ) + E(zm1 z

L+1
2 zn3 − zn1 zm2 z3) + F (zL+1

1 zm2 z
n
3 − zm1 zn2 z3). (29)

Performing a similar exercise to enforce consistency by setting the coefficients of each monomial to 0, we obtain

zL1 =
B

F
=
A

D
, zL2 =

C

B
=
D

E
, zL3 =

F

C
=
E

A
. (30)

Given our expressions for the amplitudes above, one can check that these equations are equivalent to the Bethe equations

zLi =

3∏
k=1

zizk − 2zi + 1

zizk − 2zk + 1
. (31)

As before, we have reduced the task at hand to solving these coupled algebraic equations!
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3.4 Multi-spin excitations and the Bethe equations

For general p, the Bethe ansatz is

ψ(n1, . . . np) =
∑
σ∈Sp

Aσ

p∏
k=1

znk

σ(k). (32)

We have already seen that the three body collision factors into two body collisions and thus provides no new information.
This property is what makes our system tractable. In fact collisions of any degree will factor totally into two-body collisions,
and so these are the only conditions that we need to enforce.

Therefore the number of conditions we can enforce in order to solve for our eigenfunctions and eigenvectors is one
eigenvalue condition, p− 1 two-body collisions, and two boundary conditions, namely from translating all excitations by
L and from the case where the last excitation is at the lattice site L. This is a total of p + 1 conditions. The number
of unknowns in our ansatz is p! − 1 + p, for the amplitudes of the various terms (modulo an overall factor) and and the
values of the zk themselves. However, since the amplitudes are related to one another by functions of the zk, we need only
to solve for one of the ratios, and the others will follow. Note that the reduction in complexity due to the factorization of
the collisions is commensurate with the reduction in complexity from the algebraic relationship between amplitude ratios.
Therefore the total number of unknowns is also p+ 1. This will allow us to solve for the zi for i ∈ {1, . . . , p}. In general
one finds that these satisfy

zLi = (−1)p+1

p∏
k=1

zizk − 2zi + 1

zizk − 2zk + 1
, (33)

for excitations of p spins. These are the general Bethe equations.
The fact that the number of conditions and the number of unknowns are both p + 1 is highly nontrivial and is what

makes this model solvable by the Bethe ansatz. In general this will not be true: but for a class of so-called integrable
models this property holds, and allows for solution by the Bethe ansatz.

4 Solving the Bethe equations

In principle, as we have said, the full spectrum of our Hamiltonian can be found by solving the Bethe equations for p from
1 to L. Although we have seriously simplified the problem from the original diagonalization of a 2L × 2L matrix to the
solution of p coupled algebraic equations, finding the solutions of these equations is still quite nontrivial.

To see how this works, consider the case of p = 2. Then the Bethe equations become the same for z1 and z2, namely

(11/L + 1)(zL + 1)− 2(z + 11/LzL−1) = 0, (34)

where we have used the fact that z1z2 = 11/L where 11/L is an Lth root of unity. This equation has L solutions which can
be found numerically. Furthermore, solutions where z1 = z2 are invalid, as can be checked given the form of the Bethe
ansatz for p = 2 above. Therefore we have

(
L
2

)
solutions for the pair z1 and z2. The same idea continues for larger values

of p, though it is much more difficult (even numerically) and I do not know of a systematic way of solving these equations.
I believe that for each p, we get

(
L
p

)
valid solutions of the {z1, . . . zp}, which therefore account for all 2L eigenvalues since∑L

p=1

(
L
p

)
= 2L. There are related cases (which we will discuss in other notes) where the Bethe equations are easier to

solve, but the XXX chain requires quite a lot of work to solve.
We will end our discussion here for now: having discussed the derivation of the Bethe equations and the nontrivial facts

that allow us to solve the XXX model by the appropriate Bethe ansatz. There is lots more to be said about solving the
Bethe equations, as well as different incarnations of the Bethe ansatz (algebraic, functional, etc.) which we may address
in further notes.
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